WebOct 24, 2024 · Recently, a flow-based framework[] was proposed, called manifold-learning flow to perform both manifold learning and density estimation. In this setting, there are two flow-based maps: one for manifold learning, and one for density estimation. Using these two maps, one can often identify the full data manifold and generate sample points on … WebThis paper proposes a novel normalizing flow on SO(3) by combining a Mobius transformation-based coupling layer and a quaternion affine transformation and shows that this flow significantly outperform the baselines on both unconditional and conditional tasks. Normalizing flows (NFs) provide a powerful tool to construct an expressive distribution by …
Flow-based Generative Models for Learning Manifold to Manifold …
WebMany measurements or observations in computer vision and machine learning manifest as non-Euclidean data. While recent proposals (like spherical CNN) have extended a … WebTitle: Flow Based Models For Manifold Data; Authors: Mingtian Zhang and Yitong Sun and Steven McDonagh and Chen Zhang; Abstract summary: Flow-based generative models typically define a latent space with dimensionality identical to the observational space. In many problems, the data does not populate the full ambient data-space that they reside ... tsb branch telford
zhenxingjian/Dual_Manifold_GLOW - Github
WebThe major successes of deep generative models in recent years are primarily in domains involving Euclidean data, such as images (Dhariwal and Nichol, 2024), text (Brown et al., … WebJul 1, 2024 · The purpose of this paper is to derive a manifold learning approach to dimensionality reduction for modeling data coming from either causal or noncausal signals. The approach is based on some theoretical results that aim first at giving a practical method for the estimation of the intrinsic dimension and then at deriving a local parametrization ... WebTo sidestep the dimension mismatch problem, SoftFlow estimates a conditional distribution of the perturbed input data instead of learning the data distribution directly. We experimentally show that SoftFlow can capture the innate structure of the manifold data and generate high-quality samples unlike the conventional flow-based models. philly irish